Estimation of dynamically evolving ellipsoids with applications to medical imaging
نویسندگان
چکیده
The estimation of dynamically evolving ellipsoids from noisy lower-dimensional projections is examined. In particular, this work describes a model-based approach using geometric reconstruction and recursive estimation techniques to obtain a dynamic estimate of left-ventricular ejection fraction from a gated set of planar myocardial perfusion images. The proposed approach differs from current ejection fraction estimation techniques both in the imaging modality used and in the subsequent processing which yields a dynamic ejection fraction estimate. For this work, the left ventricle is modeled as a dynamically evolving three-dimensional (3-D) ellipsoid. The left-ventricular outline observed in the myocardial perfusion images is then modeled as a dynamic, two-dimensional (2-D) ellipsoid, obtained as the projection of the former 3-D ellipsoid. This data is processed in two ways: first, as a 3-D dynamic ellipsoid reconstruction problem; second, each view is considered as a 2-D dynamic ellipse estimation problem and then the 3-D ejection fraction is obtained by combining the effective 2-D ejection fractions of each view. The approximating ellipsoids are reconstructed using a Rauch-Tung-Striebel smoothing filter, which produces an ejection fraction estimate that is more robust to noise since it is based on the entire data set; in contrast, traditional ejection fraction estimates are based only on true frames of data. Further, numerical studies of the sensitivity of this approach to unknown dynamics and projection geometry are presented, providing a rational basis for specifying system parameters. This investigation includes estimation of ejection fraction from both simulated and real data.
منابع مشابه
Estimation of Dynamically Evolving Ellipsoids with Applications to Cardiac Imaging
This thesis deals with a method to obtain the ejection fraction of the left ventricle of the heart from a gated set of planar myocardial perfusion images. Ejection fraction is defined as the ratio of the fully contracted left-ventricular volume to the fully expanded left-ventricular volume and is known as an effective gauge of cardiac function. This method is proposed as a safer and more cost e...
متن کاملEstimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study
Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...
متن کاملApplications of gold nanoparticles for medical imaging
Background & Aim: Molecular imaging enables us to non-invasively visualize tissue microstructures and lesion characterization, allowing accurate diagnosis of diseases at early stages. A successful molecular imaging requires a nontoxic contrast agent with high sensitivity. Nowadays, a wide range of nanoparticles have been developed as contrast agents for medical imaging modalities. Here, we revi...
متن کاملI-55: Molecular Imaging Overview
Molecular imaging is the noninvasive visualization of normal as well as abnormal cellular processes at a molecular or genetic level of function. It is used to provide characterization and measurement of biological processes in living animals and humans (in vivo). The discipline of molecular imaging evolved rapidly over the past decade through the integration of cell biology, molecular biology a...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on medical imaging
دوره 14 2 شماره
صفحات -
تاریخ انتشار 1995